AI Roadmap Workbook for Non-Technical Business Leaders
A straightforward, no-jargon workbook showing how AI can truly benefit your business — and where it may not be useful.
The Dev Guys – Mumbai — Smart thinking. Simple execution. Fast delivery.
Why This Workbook Exists
In today’s business world, leaders are often told they must have an AI strategy. AI discussions are happening everywhere—from vendors to competitors. But business heads often struggle between two bad decisions:
• Accepting every proposal and hoping it works out.
• Declining AI entirely because of confusion or doubt.
This workbook offers a balanced third option: a calm, realistic way to identify where AI truly fits in your business — and where it doesn’t.
You don’t have to be technical; you just need to know your operations well. AI is simply a tool built on top of those foundations.
How to Use This Workbook
Either fill it solo or discuss it collaboratively. It’s not about completion — it’s about clarity. By the end, you’ll have:
• A short list of meaningful AI opportunities tied to profit or efficiency.
• Understanding of where AI should not be used.
• A structured sequence of projects instead of random pilots.
Think of it as a guide, not a form. A good roadmap fits on one slide and makes sense to your CFO.
AI strategy equals good business logic, simply expressed.
Step 1 — Business First
Begin with Results, Not Technology
Most AI discussions begin with tools and tech questions like “Can we use ChatGPT here?” — that’s backward. Instead, begin with clear results that matter to your company.
Ask:
• What top objectives are driving your business now?
• Where are teams overworked or error-prone?
• Where do poor data or slow insights hold back progress?
It should improve something tangible — speed, accuracy, or cost. If an idea doesn’t tie to these, it’s not a roadmap — it’s just an experiment.
Skipping this step leads to wasted tools; doing it right builds power.
Step Two — Map the Workflows
Visualise the Process, Not the Platform
AI fits only once you understand the real workflow. Simply document every step from beginning to end.
Examples include:
• New lead arrives ? assigned ? nurtured ? quoted ? revised ? finalised.
• Customer issue logged ? categorised ? responded ? closed.
• Invoice generated ? sent ? reminded ? paid.
Each step has three parts: inputs, actions, outputs. AI adds value where inputs are Gen AI consulting messy, actions are repetitive, and outputs are predictable.
Step 3 — Prioritise
Assess Opportunities with a Clear Framework
Evaluate AI ideas using a simple impact vs effort grid.
Think of a 2x2: impact on the vertical, effort on the horizontal.
• Quick Wins — high impact, low effort.
• Reserve resources for strategic investments.
• Nice-to-Haves — low impact, low effort.
• Delay ideas that drain resources without impact.
Consider risk: some actions are reversible, others are not.
Begin with low-risk, high-impact projects that build confidence.
Laying Strong Foundations
Fix the Foundations Before You Blame the Model
Messy data ruins good AI; fix the base first. Ask yourself: Is the data 70–80% complete? Are processes well defined?.
Keep Humans in Control
Keep people in the decision loop. As trust grows, expand autonomy gradually.
Avoid Common AI Pitfalls
Learn from Others’ Missteps
01. The Shiny Demo Trap — getting impressed by flashy demos with no purpose.
02. The Pilot Graveyard — endless pilots that never scale.
03. The Automation Mirage — expecting overnight change.
Define ownership, success, and rollout paths early.
Working with Experts
Your role is to define the problem clearly, not design the model. State outcomes clearly — e.g., “reduce response time 40%”. Expose real examples, not just ideal scenarios. Clarify success early and plan stepwise rollouts.
Transparency about failures reveals true expertise.
Signs of a Strong AI Roadmap
How to Know Your AI Strategy Works
It’s simple, measurable, and owned.
Buzzword-free alignment is visible.
Ownership and clarity drive results.
Essential Pre-Launch AI Questions
Before any project, confirm:
• What measurable result does it support?
• Is the process clearly documented in steps?
• Do we have data and process clarity?
• Where will humans remain in control?
• How will success be measured in 90 days?
• What’s the fallback insight?
Conclusion
Good AI brings order, not confusion. It’s not a list of tools — it’s an execution strategy. True AI integration supports your business invisibly.